
Unit 6

Menus, Navigation and Web Page Protection

Marks: 14 (R-2, U-4, A-6)

Course Outcome: Create menus and navigations in web pages.

Unit Outcome:
1) Develop Javascript to manage the given status bar.
2) Develop javascript to create the given banner.
3) Develop javascript to create the given slideshow.
4) Develop javascript to create the given menu.
5) Develop javascript to protect a webpage in a specified manner.

Topics and Sub-topics:

6.1 Status bar-builds a static message, changing the message using rollover, moving the
message using rollover
6.2 Banner-loading and displaying banner advertisement. Linking a banner advisement to
url
6.3 Slide show – creating a slideshow
6.4 Menus-creating a pulldown menu, dynamically changing a menu, validating a menu
selection, Floating menu, chain select menu, Tab menu, Pop-up menu, sliding menu,
Highlighted menu, Folding a tree menu, context menu, scrollable menu, side bar menu
6.5 Protective web page-Hiding your code, disabling the right mouse button, javascript,
concealing e-mail address

6.6 Frameworks of javascript and it]\s application.

6.1. Status Bar

The status property of the Window interface was originally intended to set the text in the
status bar at the bottom of the browser window. However, the HTML standard now
requires setting window.status to have no effect on the text displayed in the status bar.

Syntax:

window.status = string;

var value = window.status;

<html>

<head>

<title>JavaScript Status Bar</title></head>

<body>

<a href="http://www.vpt.edu.in"

onMouseOver="window.status='Vidyalankar';return true"

onMouseOut="window.status='';return true">

Vidyalankar

</body>

</html>

Output:

Note: “window.status” does not supported any browser.

6.2 Banner

https://developer.mozilla.org/en-US/docs/Web/API/Window

The banner advertisement is the hallmark of every commercial web page. It is typically
positioned near the top of the web page, and its purpose is to get the visitor's attention by
doing all sorts of clever things.
Nearly all banner advertisements are in a file format such as a GIF, JPG, TIFF, or other
common graphic file format. Some are animated GIFs, which is a series of images
contained in one file that rotate automatically on the screen. Some are Flash movies that
require the visitor to have a browser that includes a Flash plug-in. Many banner
advertisements consist of a single graphical image that does not contain any animation
and does not require any special plug-in.
You need to do three things to incorporate a banner advertisement in your web page:
1. Create several banner advertisements using a graphics tool such as Photoshop. You'll
want to make more than one advertisement so you can rotate them on your web page
using a JavaScript.
2. Create an element in your web page with the height and width necessary to
display the banner advertisement.
3. Build a JavaScript that loads and displays the banner advertisements in conjunction with
the element.

6.2.1 Loading and Displaying Banner Advertisements

The banners should all be the same size so they look professional as they rotate on your
web page. The best way to do this is to create an empty banner and then copy it for each
banner advertisement that you want to build. This assures that all the banners will be the
same size.
You can then use each copy to design each ad. Next, create an image element on your
web page using the tag. You'll need to set four attributes of the tag: src, width,
height, and name. Set
the src attribute to the file name of the first banner advertisement that you want to display.
Set the width and height attributes to the width and height of the banner. Set the name
attribute to a unique name for the image element. You'll be using the name attribute in the
JavaScript when you change from one banner to the next. The image element (banner)
should be centered in the page using the <center> tag within the <body> tag of your web
page, The final step is to build the JavaScript that will rotate the banners on your web
page. You'll define the JavaScript in the <head> tag of the web page.

The JavaScript must do the following to load the banner:
1. Load banner advertisements into an array.
2. Determine whether the browser supports the image object.
3. Display a banner advertisement.
4. Pause before displaying the next banner advertisement.

You load the banner advertisements into an array by declaring an Array() object and
initializing it with the file name of each banner advertisement. For example, suppose you
have three banner advertisements that are contained in the 1.jpg, 2.jpg, and 3.jpg files.
Here's how you'd load them into an Array() object:

Banners = new Array('1.jpg','2.jpg','3.jpg')

Example:

<html >
<head>
<title>Banner Ads</title>
<script>
Banners = new Array('1.jpg','2.jpg','3.jpg');
CurrentBanner = 0;
function DisplayBanners()
{
if (document.images);
{
CurrentBanner++;
if (CurrentBanner == Banners.length)
{
CurrentBanner = 0;
}
document.RotateBanner.src= Banners[CurrentBanner];
setTimeout("DisplayBanners()",1000);
}
}
</script>
</head>
<body onload="DisplayBanners()" >
<center>
<img src="1.jpg" width="400"
height="75" name="RotateBanner" />
</center>
</body>
</html>

6.2.2 Linking Banner Advertisements to URLs

A banner advertisement is designed to encourage the visitor to learn more information
about a product or service that is being advertised. To get additional information, the
visitor is expected to click the banner so that a new web page opens. You can link a
banner advertisement to a web page by inserting a hyperlink into your web page that calls
a JavaScript function rather than the URL of a web page. The JavaScript then determines
the URL that is associated with the current banner and loads the web page that is
associated with the URL.

<html>
<head>
<title>Link Banner Ads</title>
<script language="Javascript" type="text/javascript">

Banners = new Array('1.jpg','2.jpg','3.jpg')
BannerLink = new Array(
'google.com/','vpt.edu.in/', 'msbte.org.in/');
CurrentBanner = 0;
NumOfBanners = Banners.length;
function LinkBanner()
{
document.location.href =
"http://www." + BannerLink[CurrentBanner];
}
function DisplayBanners() {
if (document.images) {
CurrentBanner++
if (CurrentBanner == NumOfBanners) {
CurrentBanner = 0
}
document.RotateBanner.src= Banners[CurrentBanner]
setTimeout("DisplayBanners()",1000)
}
}
</script>
</head>
<body onload="DisplayBanners()" >
<center>
<img src="1.jpg"
width="400" height="75" name="RotateBanner" />
</center>
</body>
</html>

6.3 Slideshow:

A slideshow is similar in concept to a banner advertisement in that a slideshow rotates
multiple images on the web page. However, unlike a banner advertisement, a slideshow

gives the visitor the ability to change the image that's displayed: the visitor can click the
Forward button to see the next image and the Back button.

Creating a slideshow:

First, set the slideIndex to 1. (First picture)
Then call showDivs() to display the first image.
When the user clicks one of the buttons call plusDivs().
The plusDivs() function subtracts one or adds one to the slideIndex.
The showDiv() function hides (display="none") all elements with the class name
"mySlides", and displays (display="block") the element with the given slideIndex.
If the slideIndex is higher than the number of elements (x.length), the slideIndex is set to
zero.

If the slideIndex is less than 1 it is set to number of elements (x.length).

<html>
<title>slideshow</title>
<body>
<h2 class="w3-center">Manual Slideshow</h2>
<div class="w3">

<button class="aa" onclick="plusDivs(-1)">❮Back</button>
<button class="bb" onclick="plusDivs(1)">❯Forward</button>
</div>

<script>
var slideIndex = 1;
showDivs(slideIndex);

function plusDivs(n)
{
showDivs(slideIndex += n);
}

function showDivs(n)
{
var i;

var x = document.getElementsByClassName("mySlides");
if (n > x.length)
{
slideIndex = 1
}

if (n < 1)
{
slideIndex = x.length
}

for (i = 0; i < x.length; i++)
{
x[i].style.display = "none";
}

x[slideIndex-1].style.display = "block";
}
</script>
</body>
</html>

Automatic Slideshow:

<html>

<head>

<title>Automatic Slideshow</title>

</head>

<body>

<h2 class="aa">Automatic Slideshow</h2>

<div class="aa" style="max-width:500px">

</div>

<script>

var myIndex = 0;

auto_slide_show();

function auto_slide_show()

{

var i;

var x = document.getElementsByClassName("mySlides");

for (i = 0; i < x.length; i++) {

x[i].style.display = "none";

}

myIndex++;

if (myIndex > x.length) {myIndex = 1}

x[myIndex-1].style.display = "block";

setTimeout(auto_slide_show, 2000); // Change image every 2 seconds

}

</script>

</body>

</html>

6.4 Menus:

A menu consists of a set of options which are presented to the user. Menus are common in
graphical user interface such as Windows or Mac OS.

The Menu component provides the pull-down menu element that's common in most
graphical user interfaces (GUIs). Using a familiar GUI element will reduce the interface
learning curve of your web site or application for new users, as well as help all users more
easily find what they're looking for. Having menus that contain links to sections at various
levels in your web site can improve both the navigation of the site and the real estate of
your web pages.

6.4.1 Creating pull-down menu:

● Also known as drop-down menus.
● Clicking a menu title causes the menu items to appear to drop down from that

position and be displayed.

Code: Create a simple menu: If user not selected any menu, alert should be displayed.

Select Fruit:

<select id="ddlFruits">

<option value=""></option>

<option value="1">Apple</option>

<option value="2">Mango</option>

<option value="3">Orange</option>

</select>

<input type="submit" value="Validate" onclick="return Validate()" />

<script type="text/javascript">

function Validate()

{

var ddlFruits = document.getElementById("ddlFruits");

if (ddlFruits.value == "") {

//If the "Please Select" option is selected display error.

alert("Please select an option!");

return false;

}

return true;

}

</script>

Code: Design a drop-down menu for various colours. After selecting any colour from
menu, background colour should be changed.

1) demo2.html
2) demo2-script.js
3) demo2-style.css

HTML file:

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Demo 2</title>

<link rel="stylesheet" href="demo2-style.css">

</head>

<body>

<div class="container">

<label for="color">Choose a Background Color:</label>

<select name="color" id="color" class="color" onchange="changeColor()">

<option value="white">White</option>

<option value="black">Black</option>

<option value="blue">Blue</option>

<option value="red">Red</option>

<option value="yellow">Yellow</option>

</select>

</div>

<script type="text/javascript" src="demo2-script.js"></script>

</body>

</html>

JavaScript file:

changeColor = () => {

var color = document.getElementById("color").value;

switch(color){

case "white":

document.body.style.backgroundColor = "white";

document.body.style.color = "black";

document.getElementById("color").style.backgroundColor = "white";

document.getElementById("color").style.color = "black";

break;

case "black":

document.body.style.backgroundColor = "black";

document.body.style.color = "white";

document.getElementById("color").style.backgroundColor = "black";

document.getElementById("color").style.color = "white";

break;

case "blue":

document.body.style.backgroundColor = "blue";

document.body.style.color = "white";

document.getElementById("color").style.backgroundColor = "blue";

document.getElementById("color").style.color = "white";

break;

case "red":

document.body.style.backgroundColor = "red";

document.body.style.color = "white";

document.getElementById("color").style.backgroundColor = "red";

document.getElementById("color").style.color = "white";

break;

case "yellow":

document.body.style.backgroundColor = "yellow";

document.body.style.color = "black";

document.getElementById("color").style.backgroundColor = "yellow";

document.getElementById("color").style.color = "black";

break;

default:

document.body.style.backgroundColor = "white";

document.body.style.color = "black";

document.getElementById("color").style.backgroundColor = "white";

document.getElementById("color").style.color = "black";

break;

}

}

CSS file:

* {

box-sizing: border-box;

}

body {

font-family: "Calibri", "Roboto", sans-serif;

-ms-overflow-style: none; /* IE and Edge */

scrollbar-width: none; /* Firefox */

}

body::-webkit-scrollbar {

display: none;

}

.container{

margin: 10%;

text-align: center;

}

.color{

width: 30%;

outline: none;

height: 30px;

background: transparent;

}

6.4.2 Dynamically changing a Menu:

Code: Following example provides two radio buttons to the user one is for fruits and
another is for vegetables.

When user will select the fruits radio button, the option list should present only the fruits
names to user and when user will select the vegetable radio button, the option list should
present only the vegetable names to user so that user can select an appropriate element
of interest.

<html>

<body>

<html>

<script type="text/javascript">

function modifyList(x)

{

with(document.forms.myform)

{

if(x ==1)

{

optionList[0].text="Kiwi";

optionList[0].value=1;

optionList[1].text="Pine-Apple ";

optionList[1].value=2;

optionList[2].text="Apple";

optionList[2].value=3;

}

if(x ==2)

{

optionList[0].text="Tomato";

optionList[0].value=1;

optionList[1].text="Onion ";

optionList[1].value=2;

optionList[2].text="Cabbage ";

optionList[2].value=3;

}

}

}

</script>

</head>

</body>

<form name="myform" action=" " method="post">

<select name="optionList" size="3">

<option value=1>Kiwi

<option value=1>Pine-Apple

<option value=1>Apple

</select>

<input type="radio" name="grp1" value=1 checked="true"
onclick="modifyList(this.value)"> Fruits

<input type="radio" name="grp1" value=2 onclick="modifyList(this.value)"> Vegitables

</form>

</body>

</html>

Output:

6.4.3 Validating Menu Selections:

Code: Following example provides four list elements as name of branches. When you
select a branch from list, selected branch will be displayed as output.

<html>

<body>

<p>Select Program from list:</p>

<select id="mySelect" onchange="myFunction()">

<option value="CO">Computer Engg</option>

<option value="IF">Information Technology</option>

<option value="EJ">Electronics and Tele</option>

<option value="CE">Chemical Engg</option>

</select>

<p id="demo"></p>

<script>

function myFunction()

{

var x = document.getElementById("mySelect").value;

document.getElementById("demo").innerHTML = "You selected: " + x;

}

</script>

</body>

</html>

Output:

Code:

<html>

<script language="Javascript">

function validate()

{

if(document.form.city.selectedIndex=="")

{

alert ("Please select city!");

return false;

}

var sel = document.getElementById("city");

//get the selected option

var selectedText = sel.options[sel.selectedIndex].text;

alert("You have selected : "+selectedText);

return true;

}

</script>

<form name="form" method="post" onSubmit="return validate()"><pre>

Select your City <select name="city" id="city">

<option value="Select">Select</option>

<option value="Delhi">Delhi</option>

<option value="Jaipur">Jaipur</option>

<option value="Agra">Agra</option>

<option value="Bangalore">Bangalore</option>

<option value="Pune">Pune</option>

</select>

<input type="submit" name="Submit" value="Submit">

</pre></form>

</html>

Output:

6.4.4. Floating Menu

Also known as "fixed menus" and "hovering menus", floating menus stay in a fixed position
when you scroll the page. They appear to "float" on top of the page as you scroll.

Code:

<html>

<title>Example</title>

<style>

body {

background-image: url('/pix/samples/bg1.gif');

}

main {

margin-bottom: 200%;

}

.floating-menu {

font-family: sans-serif;

background: yellowgreen;

padding: 5px;;

width: 130px;

z-index: 100;

position: fixed;

}

.floating-menu a,

.floating-menu h3 {

font-size: 0.9em;

display: block;

margin: 0 0.5em;

color: white;

}

</style>

<main>

<p>Scroll down and watch the menu remain fixed in the same position, as though it was
floating.</p>

<nav class="floating-menu">

<h3>Floating Menu</h3>

C

C++

Java

Python

</nav>

</main>

Output: scroll down the page to observe the output:

6.4.5. Chain Select Menu

Chained selects menu lets you “chain” multiple form selects list together so that the
selection in a “parent” list can tailor the options available in a “child” list.

Code:

<html>

<head><title>chained menu</title></head>

<script>

var stateObject = {

"Maharashtra": {

"Mumbai": ["Wadala", "Nerul"],

"Pune": ["Aundh","Kothrud"]

},

"Karnataka": {

"Banglore": ["Mysoor", "Ooty"],

}

}

window.onload = function ()

{

var aaa = document.getElementById("aaa"),

bbb = document.getElementById("bbb"),

ccc = document.getElementById("ccc");

for (var state in stateObject)

{

aaa.options[aaa.options.length] = new Option(state, state);

}

aaa.onchange = function ()

{

bbb.length = 1; // remove all options bar first

ccc.length = 1; // remove all options bar first

if (this.selectedIndex < 1) {

bbb.options[0].text = "Please select city first"

ccc.options[0].text = "Please select area first"

return; // done

}

bbb.options[0].text = "Please select city"

for (var citi_name in stateObject[this.value]) {

bbb.options[bbb.options.length] = new Option(citi_name, citi_name);

}

if (bbb.options.length==2)

{

bbb.selectedIndex=1;

bbb.onchange();

}

}

aaa.onchange(); // reset in case page is reloaded

bbb.onchange = function ()

{

ccc.length = 1; // remove all options bar first

if (this.selectedIndex < 1)

{

ccc.options[0].text = "Please select area first"

return; // done

}

ccc.options[0].text = "Please select area first"

var cities = stateObject[aaa.value][this.value];

for (var i = 0; i < cities.length; i++) {

ccc.options[ccc.options.length] = new Option(cities[i], cities[i]);

}

if (ccc.options.length==2)

{

ccc.selectedIndex=1;

ccc.onchange();

}

}

}

</script>

</body>

<form name="myform" id="myForm">

<select name="optone" id="aaa" size="1">

<option value="" selected="selected">Select state</option>

</select>

<select name="opttwo" id="bbb" size="1">

<option value="" selected="selected">Please select city first</option>

</select>

<select name="optthree" id="ccc" size="1">

<option value="" selected="selected">Please select area first</option>

</select>

</form>

</body>

</html>

Output:

6.4.6 Tab Menu

Using tab menu, more complete description is displayed below the tab bar as the visitor
clicks the mouse cursor over the tabs.

2-ways to create tab menu:

a) Using button
b) Using target selector

Code: In following example, created 3 buttons using <button>

<!DOCTYPE html>

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<style>

body {font-family: Arial;}

/* Style the tab */

.tab {

overflow: hidden;

border: 1px solid #ccc;

background-color: #f1f1f1;

}

/* Style the buttons inside the tab */

.tab button {

background-color: inherit;

float: left;

border: none;

outline: none;

cursor: pointer;

padding: 14px 16px;

transition: 0.3s;

font-size: 17px;

}

/* Change background color of buttons on hover */

.tab button:hover {

background-color: #ddd;

}

/* Create an active/current tablink class */

.tab button.active {

background-color: #ccc;

}

/* Style the tab content */

.tabcontent {

display: none;

padding: 6px 12px;

border: 1px solid #ccc;

border-top: none;

}

</style>

</head>

<body>

<h2>Tabs using button </h2>

<p>Click on the buttons inside the tabbed menu:</p>

<div class="tab">

<button class="tablinks" onclick="openCity(event, 'Mumbai')">Mumbai</button>

<button class="tablinks" onclick="openCity(event, 'Bhopal')">Bhopal</button>

<button class="tablinks" onclick="openCity(event, 'Panaji')">Panaji</button>

</div>

<div id="Mumbai" class="tabcontent">

<h3>Mumbai</h3>

<p>Mumbai is the capital city of Maharashtra.</p>

</div>

<div id="Bhopal" class="tabcontent">

<h3>Bhopal</h3>

<p>Bhopal is the capital of MadhyaPradesh.</p>

</div>

<div id="Panaji" class="tabcontent">

<h3>Panaji</h3>

<p>Panajiis the capital of Goa.</p>

</div>

<script>

function openCity(evt, cityName)

{

var i, tabcontent, tablinks;

tabcontent = document.getElementsByClassName("tabcontent");

for (i = 0; i < tabcontent.length; i++)

{

tabcontent[i].style.display = "none";

}

tablinks = document.getElementsByClassName("tablinks");

for (i = 0; i < tablinks.length; i++)

{

tablinks[i].className = tablinks[i].className.replace(" active", "");

}

document.getElementById(cityName).style.display = "block";

evt.currentTarget.className += " active";

}

</script>

</body>

</html>

Output:

Code: Following example shows how to create tab menu by using target selector<a>.

<html>

<head>

<style>

:target

{

color:white;

border: 2px solid #F4D444;

background-color:green;

}

</style>

</head>

<body>

<p>Mumbai is capital of Maharashtra.</p>

<p>Bhopal is capital of Madhyapradesh.</p>

<p>Click on the links above and the :target selector highlight the current active HTML
anchor.</p>

<h3>

<p id="news1">Mumbai</p>

<p id="news2">Bhopal</p>

</h3>

</body>

</html>

Output:

Code:

<html>

<head>

<style>

.tab div {

display: none;

}

.tab div:target {

display: block;

}

</style>

</head>

<body>

<div class="tab">

Link 1

Link 2

Link 3

<div id="link1">

<h3>Content to Link 1</h3>

<p>Hello World!</p>

</div>

<div id="link2">

<h3>Content to Link 2</h3>

<h4>Great success!</h4>

</div>

<div id="link3">

<h3>Content to Link 3</h3>

<p>Yeah!</p>

</div>

</div>

</body>

</html>

Output:

6.4.7. Popup Menu:

A popup menu appears as the user moves the mouse cursor over a parent menu item. The
popup menu contains child menu items that are associated with the parent menu item.

Code:

<html>

<head>

<style>

.dropbtn {

background-color: Blue;

color: white;

padding: 16px;

font-size: 16px;

border: none;

}

.dropdown {

position: relative;

display: inline-block;

}

.dropdown-content {

display: none;

position: absolute;

background-color: red;

min-width: 160px;

box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

z-index: 1;

}

.dropdown-content a {

color: black;

padding: 12px 16px;

text-decoration: none;

display: block;

}

.dropdown-content a:hover {background-color: #ddd;}

.dropdown:hover .dropdown-content {display: block;}

.dropdown:hover .dropbtn {background-color: #3e8e41;}

</style>

</head>

<body>

<h2>Hoverable Dropdown</h2>

<p>Move the mouse over the button to open the dropdown menu.</p>

<div class="dropdown">

<button class="dropbtn">Programs:</button>

<div class="dropdown-content">

CO

IF

EJ

</div>

</div>

</body>

</html>

Output:

6.4.8. Sliding Menu:

The slide-in menu appears as a block that floats on the left /right side of the web page. It
seems to come alive when the user moves the mouse over the block.

Code:

<html>

<head>

<style>

#menu

{

position: fixed;

right: -8.5em;

top: 20%;

width: 8em;

background: pink;

color: red;

margin: -1;

padding: 0.5em 0.5em 0.5em 2.5em;

}

#menu:hover

{

right: 0

}

#menu

{

transition: 0.2s

}

#menu a

{

position: relative;

left: 0;

}

#menu a:focus

{

left: -7em;

}

#menu a { transition: 0.1s }

#menu:hover a:focus {

left: 0;

background: none;

}

</style>

</head>

<body>

<h3>

<ul id=menu>

Home

Programs

Vision

Mission

</div>

</body>

</html>

6.4.9. Highlighted Menu:

User can highlight menu by using following methods:

1) When user performs onmouseover()
2) When user performs onclick()

Code:

<html>

<head>

<title>Highlighted Menu Effect</title>

<style>

.link

{

text-decoration: none;

padding: 10px 16px;

background-color:pink;

font-size: 20px;

}

.active, .link:hover

{

background-color:gray;

color:white;

}

</style>

</head>

<body>

Move the mouse over menus:

<div id="me">

File

Edit

View

Exit

</div>

</body>

</html>

Output:

6.4.10. Folding Tree Menu:

Also known as cascading tree.

The folding tree menu looks like a tree which consists of one or more closed folders, each
of these folders further consist of some menu items.

Code:

<html>

<head>

<style>

ul, #myUL {

list-style-type: none;

}

#myUL {

margin: 0;

padding: 0;

}

.caret {

cursor: pointer;

-webkit-user-select: none; /* Safari 3.1+ */

-moz-user-select: none; /* Firefox 2+ */

-ms-user-select: none; /* IE 10+ */

user-select: none;

}

.caret::before {

content: "\25B6";

color: black;

display: inline-block;

margin-right: 6px;

}

.caret-down::before {

-ms-transform: rotate(90deg); /* IE 9 */

-webkit-transform: rotate(90deg); /* Safari */'

transform: rotate(90deg);

}

.nested {

display: none;

}

.active {

display: block;

}

</style>

</head>

<body>

<h2>Folding Tree Menu</h2>

<p>A tree menu represents a hierarchical view of information, where each item can have a
number of subitems.</p>

<p>Click on the arrow(s) to open or close the tree branches.</p>

<ul id="myUL">

India

<ul class="nested">

Karnataka

Tamilnaadu

Maharashtra

<ul class="nested">

Mumbai

Pune

Navi Mumbai

<ul class="nested">

Nerul

Vashi

Panvel

<script>

var toggler = document.getElementsByClassName("caret");

var i;

for (i = 0; i < toggler.length; i++) {

toggler[i].addEventListener("click", function() {

this.parentElement.querySelector(".nested").classList.toggle("active");

this.classList.toggle("caret-down");

});

}

</script>

</body>

</html>

Output:

6.4.11. Context Menu:

The context menu appears on the web page when the user clicks the right button on the
screen.

Code:

<html>

<head>

<style>

div {

background: yellow;

border: 1px solid black;

padding: 10px;

}

</style>

</head>

<body>

<div contextmenu="mymenu">

<p>Right-click inside this box to see the context menu!

<menu type="context" id="mymenu">

<menuitem label="Refresh" onclick="window.location.reload();"
icon="ico_reload.png"></menuitem>

<menu label="Share on...">

<menuitem label="Twitter" icon="ico_twitter.png"
onclick="window.open('//twitter.com/intent/tweet?text=' +
window.location.href);"></menuitem>

<menuitem label="Facebook" icon="ico_facebook.png"
onclick="window.open('//facebook.com/sharer/sharer.php?u=' +
window.location.href);"></menuitem>

</menu>

<menuitem label="Email This Page"
onclick="window.location='mailto:?body='+window.location.href;"></menuitem>

</menu>

</div>

<p>This example currently only works in Firefox!</p>

</body>

</html>

Output:

6.4.12. Scrollable Menu:

Scrollbar is different from other menu as it provides two arrowheads.

2-ways to implement this type of menu:

1) Horizontal Scrollable Menu:
Code:

<!DOCTYPE html>

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<style>

div.scrollmenu {

background-color: #333;

overflow: auto;

white-space: nowrap;

}

div.scrollmenu a {

display: inline-block;

color: white;

text-align: center;

padding: 14px;

text-decoration: none;

}

div.scrollmenu a:hover {

background-color: #777;

}

</style>

</head>

<body>

<div class="scrollmenu">

Home

News

Contact

About

Support

Blog

Tools

Base

Custom

More

Logo

Friends

Partners

People

Work

</div>

<h2>Horizontal Scrollable Menu</h2>

<p>Resize the browser window to see the effect.</p>

</body>

</html>

Output:

2) Vertical Scrollable Menu:
Code:

<!DOCTYPE html>

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<style>

.vertical-menu {

width: 200px;

height: 150px;

overflow-y: auto;

}

.vertical-menu a {

background-color: #eee;

color: black;

display: block;

padding: 12px;

text-decoration: none;

}

.vertical-menu a:hover {

background-color: #ccc;

}

.vertical-menu a.active {

background-color: #4CAF50;

color: white;

}

</style>

</head>

<body>

<h1>Vertical Scroll Menu</h1>

<div class="vertical-menu">

Home

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7

Link 8

Link 9

Link 10

</div>

</body>

</html>

Output:

6.4.13. Side Bar Menu:

The side bar menu displays a menu on the side of the web page.

Code:

<html>

<head>

<style>

.sidebar

{

height: 100%;

width:100px;

position:fixed;

background-color: pink;

padding-top:20px;

}

.sidebar a

{

text-deocration:none;

font-size:20px;

color:red;

display:block;

}

.sidebar a:hover

{

color:white;

}

.main

{

margin-left:160px;

padding:0px 10px;

}

</style>

</head>

<body>

<div class="sidebar">

 Home

Vision

 Mission

Programs

</div>

<div class="main">

<h2> Side bar Menu </h2>

</div>

</body>

</html>

Output:

6.5 Protecting your webpage:

There is nothing secret about your web page. Anyone with a little computer knowledge
can use a few mouse clicks to display your HTML code, including your JavaScript, on the
screen. In this, you'll learn how to hide your JavaScript and make it difficult for malicious
hackers to extract e-mail addresses from your web page.

6.5.1 Hiding Your Code
● Every developer has to admit that, on occasion, they've peeked at the code of a

web page or two by right-clicking and choosing View Source from the context
menu.

● In fact, this technique is a very common way for developers to learn new
techniques for writing HTML and Javascript. However, some developers don't
appreciate a colleague snooping around their code and then borrowing their work
without permission. This is particularly true about javascript, which are typically
more time-consuming to develop than using HTML to build a web page.

● In reality, you cannot hide your HTML code and JavaScript from prying eyes,
because a clever developer can easily write a program that pretends to be a
browser and calls your web page from your web server, saving the web page to
disk, where it can then be opened using an editor. Furthermore, the source code for
your web page—including your JavaScript—is stored in the cache, the part of
computer memory where the browser stores web pages that were requested by
the visitor.

● A sophisticated visitor can access the cache and thereby gain access to the web
page source code.

● However, you can place obstacles in the way of a potential peeker. First, you can
disable use of the right mouse button on your site so the visitor can't access the
View Source menu option on the context menu. This hide both your HTML code
and your JavaScript from the visitor. Nevertheless, the visitor can still use the View
menu's Source option to display your source code. In addition, you can store your
JavaScript on your web server instead of building it into your web page. The
browser calls the JavaScript from the web server when it is needed by your web
page.

● Using this method, the JavaScript isn't visible to the visitor, even if the visitor views
the source code for the web page.

6.5.1.1 Disabling the Right Mouse Button

The following example shows you how to disable the visitor's right mouse button while
the browser displays your web page. All the action occurs in the JavaScript that is defined
in the <head> tag of the web page.

<html>

<head>

<script>

window.onload = function()

{

document.addEventListener("contextmenu", function(e)

{

e.preventDefault();

}, false);}

</script>

<body>

<h3>Right click on screen,Context Menu is disabled</h3>

</body>

</html>

The preventDefault() method cancels the event if it is cancelable, meaning that
the default action that belongs to the event will not occur.

For example, this can be useful when:

● Clicking on a "Submit" button, prevent it from submitting a form
● Clicking on a link, prevent the link from following the URL

Syntax

event.preventDefault()

<html>

<body>

Go to W3Schools.com

<script>

document.getElementById("myAnchor").addEventListener("click", function(event){

event.preventDefault()

});

</script>

</body>

</html>

6.5.1.2 Hiding JavaScript

You can hide your JavaScript from a visitor by storing it in an external file on your web
server. The external file should have the .js file extension. The browser then calls the
external fi le whenever the browser encounters a JavaScript element in the web page. If
you look at the source code for the web page, you'll see reference to the external .js file,
but you won't see the source code for the JavaScript.

The next example shows how to create and use an external JavaScript fi le. First you must
tell the browser that the content of the JavaScript is located in an external fi le on the web
server rather than built into the web page. You do this by assigning the fi le name that
contains the JavaScript to the src attribute of the <script> tag.

Next, you need to define empty functions for each function that you define in the external
JavaScript file.

webpage.html

<html>

<head>

<script src="mycode.js" languages="javascript" type="text/javascript">

</script>

<body>

<h3> Right Click on screen, Context Menu is disabled</h3>

</body>

</html>

mycode.js

window.onload=function()

{

document.addEventListener("contextmenu", function(e)

{

e.preventDefault();

}, false);

}

6.5.2 Concealing Your E-mail Address

● Many of us have endured spam at some point and have probably blamed every
merchant we ever patronized for selling our e-mail address to spammers.

● While e-mail addresses are commodities, it's likely that we ourselves are the
culprits who invited spammers to steal our e-mail addresses.

● Here's what happens: Some spammers create programs called bots that surf the
● Net looking for e-mail addresses that are embedded into web pages, such as those

placed there by developers to enable visitors to contact them. The bots then strip
these e-mail addresses from the web page and store them for use in a spam attack.

● This technique places developers between a rock and a hard place. If they place
their e-mail addresses on the web page, they might get slammed by spammers.

● If they don't display their e-mail addresses, visitors will not be able to get in touch
with the developers.

● The solution to this common problem is to conceal your e-mail address in the
source code of your web page so that bots can't find it but so that it still appears on
the web page.

● Typically, bots identify e-mail addresses in two ways: by the mailto: attribute that
tells the browser the e-mail address to use when the visitor wants to respond to
the web page, and by the @ sign that is required of all e-mail addresses. Your job is
to confuse the bots by using a JavaScript to generate the e-mail address
dynamically. However, you'll still need to conceal the e-mail address in your
JavaScript, unless the JavaScript is contained in an external JavaScript file, because
a bot can easily recognize the mailto: attribute and the @ sign in a JavaScript.

● Bots can also easily recognize when an external file is referenced.
● To conceal an e-mail address, you need to create strings that contain part of the

e-mail address and then build a JavaScript that assembles those strings into the
e-mail address, which is then written to the web page.

● The following example illustrates one of many ways to conceal an e-mail address.
● It also shows you how to write the subject line of the e-mail. We begin by creating

four strings:
• The first string contains the addressee and the domain along with symbols

&, *, and _ (underscore) to confuse the bot.
• The second and third strings contain portions of the mailto: attribute

name. Remember that the bot is likely looking for mailto:
• The fourth string contains the subject line. As you'll recall from your

HTML training, you can generate the TO, CC, BCC, subject, and body
of an e-mail from within a web page.

● You then use these four strings to build the e-mail address. This process starts by
using the replace() method of the string object to replace the & with the @ sign and
the * with a period (.). The underscores are replaced with nothing, which is the
same as simply removing the underscores from the string.

● All the strings are then concatenated and assigned to the variable b, which is then
assigned the location attribute of the window object. This calls the e-mail program
on the visitor's computer and populates the TO and Subject lines with the strings
generated by the JavaScript.

<html >

<head>

<title>Conceal Email Address</title>

<script>

function CreateEmailAddress()

{

var x = 'abcxyz*c_o_m'

var y = 'mai'

var z = 'lto'

var s = '?subject=Customer Inquiry'

x = x.replace('&','@')

x = x.replace('*','.')

x = x.replace('_','')

x = x.replace('_','')

var b = y + z +':'+ x + s

window.location=b;

}

</script>

</head>

<body>

<input type="button" value="send" onclick="CreateEmailAddress()">

</body>

</html>

6.6 Frameworks of JavaScript and its application

JavaScript is a multi-paradigm language that supports event-driven, functional, and
imperative (including object-oriented and prototype-based) programming
styles. JavaScript was initially used only for the client-side. However, these days,
JavaScript is used as a server-side programming language as well. To summarize, in just a
simple sentence - JavaScript is the language of the web.

JavaScript framework is an application framework written in JavaScript where the
programmers can manipulate the functions and use them for their convenience.

Frameworks are more adaptable for the designing of websites, and hence, most of the
website developers prefer it. JavaScript frameworks are a type of tool that makes working
with JavaScript easier and smoother. These frameworks also make it possible for the
programmer to code the application as a device responsive.
Following are the most used framework of JavaScript:
1) React

React is not among the earliest disruptive JavaScript-based Web frameworks. But it is
the most disruptive and influential JavaScript-based Web framework. Jordan Walke and a
group of Facebook Engineers created React in 2013 as a Component-based Web
Framework with one-way data flow and changed the Front-end Web Development
forever. It also introduced many other concepts like functional, declarative
programming, immutable state, which was uncommon in Front-end development. The
other breakthrough of React was to introduce the Virtual DOM, which gives better user
experience and performance gain.

Features

● Declarative: Creates interactive and dynamic UI for websites and mobile
applications. React updates efficiently and render the right components when data
changes. Declarative views make the code readable and easy to debug.

● Virtual DOM: For every DOM object, there is a corresponding "virtual DOM object."
It creates a virtual copy of the original DOM and is a representation of a DOM
object,

● Event handling: React has its fully compatible W3C object model event system
created. It also provides a cross-browser interface to a native event, meaning no
need to worry about incompatible event names and fields. React reduces memory
head by as event system is implemented through event delegation and has a pool
of event objects.

● JSX: JSX is a markup syntax that closely resembles HTML. JSX makes writing React
components easier by making the syntax almost identical to the HTML injected into
the web page.

● Performance: React uses one-way data binding with an application architecture
called Flux controls. ReactJS helps update the View for the user and, Flux controls
the application workflow. Virtual DOM adds advantages as it compares the new
data with original DOM and updates the View automatically.

● React Native: React Native is a custom renderer for React; it uses native
components instead of web components like React as building blocks. It also serves
access to these platforms' features, apart from transforming React code to work on
iOS and Android.

● Component-Based: In React, everything is a component of the web page divided
into small components to create a view(or UIs). Every part of the application visuals
would be wrapped inside a self-contained module known as a component.
Components in ReactJS use to define the visuals and interactions in applications.

2. Node.js

● In 2009, Ryan Dahl created the asynchronous, event-driven Server-Side JavaScript
runtime Node.js and brought JavaScript in the uncharted territory of Back-end
development.

● Ryan Dahl has used the popular JavaScript Engine V8 and C++ libraries. Since then,
the popularity of both Node.js and JavaScript has skyrocketed.

● With Node Package Manager NPM and countless numbers of frameworks/libraries,
Node.js has surpassed many other established Server-side frameworks.

● Because of its Asynchronous Event-Driven nature and lightweight, fast runtime,
Node.js is especially suited for I/O heavy applications like Web, IoT, Serverless.

● Node.js is one of the primary driving force to improve JavaScript as a programming
language and to increase the popularity of JavaScript.

Features:
● It is swift:

The library of Node.js is fast when it comes to code execution, as it is built on the
V8 JavaScript engine of Google Chrome.

● I/O is asynchronous and Event-Driven:
All the APIs are asynchronous, which means that its server does not wait for the API
to come back with data. Here the server calls the APIs one by one and keeps

moving to the next one while using a notification mechanism of Events to generate
a response from the API, called previously. This makes it fast too.

● Single-threaded:
Node.js, along with event looping, follows a single-threaded model.

● Highly scalable:
Node.js follows an event mechanism that makes it possible for the server to
respond in a non-blocking manner, which eventually makes it scalable.

● No buffering:
When it comes to uploading audio and video files, Node.js cuts down the
processing time significantly. It does not buffer any data, and here the application
gets out the data in chunks.

● Open source:
Being open-source, Node.js's community has come up with several amazing
models that can be used to add better capabilities to the Node.js applications.

● License:
It has been released under MIT license.

3. Vue.js

In modern days where Web frameworks are backed by Giant Tech companies, Vue.js is an
exception. In 2014, an ex-Google Engineer Evan You decided to combine the good parts of
AngularJS (View Layer) and the good parts of React (Virtual DOM) and created Vue.js.
Today, Vue.js is one of the most popular JavaScript-based Web frameworks. One of the
key design goals of Evan You was to lower the barrier into JavaScript-based front-end
development. Vue.js is one of the easiest Front-end frameworks where developers can
write SPA applications with minor effort.
Developers can use Vue.js as an End-to-End framework with Routing, State management
like Angular, or as only a view layer like React. It also offers Angular like two-way
data-binding with additional Reactivity and React like rendering using Virtual DOM.

Features:

● Virtual DOM: Vue.js utilizes virtual DOM. Virtual DOM is a clone of the principal
DOM element. The virtual DOM absorbs every change intended for the DOM
presents in the form of JavaScript data structures, which are compared with the
original data structure.

● The viewers view final changes that reflect in the real DOM. The method is creative
and cost-effective; also, the changes are done quickly.

● Data Binding: This feature facilitates to manipulate or assign values to HTML
attributes., change the style, assign classes with v-bind available, which is a binding
directive.

● CSS Transitions and Animations: This feature provides several methods to apply a
transition to HTML elements when added, updated, or removed from the DOM. Its
features consist of a built-in component that wraps the element responsible for
returning the transition effect.

● Template: It provides HTML-based templates that bind the DOM with the Vue.js
instance data. The templates are compiled into Virtual DOM Render functions. A
developer can use the render functions template and can replace the template with
the render function.

● Methods: We use methods when an event occurs that isn’t necessarily related to
the instance data being mutated or want to change a component’s state. Methods
do not keep records of any dependencies but can take arguments.

● Complexity: Vue.js is simpler in terms of API and design. A web developer builds
simple applications in a single day.

4. Angular

In AngularJS, Google had created one of the earliest hot JavaScript-based Front-end
frameworks in 2010. But once Facebook released React, it exposed the design flaws of
AngularJS, and it quickly became an outdated framework. As a result, the Google team has
created an entirely new SPA framework and released it as Angular in 2016. Although
Angular and AngularJS have similar names, in reality, they are two different frameworks.
Unlike React, it is an end-to-end Framework with “Out-of-the-box” support of everything
one needs to develop an Enterprise-grade Web App. Also, Angular is the first significant
framework that has embraced TypeScript and played a considerable role in making
TypeScript popular.

Features:
● Angular.js is an end-to-end framework with “out of the box” support to develop

Enterprise Application. In Angular CLI, it has one of the best Command-Line Tool in
the JavaScript landscape.

● With TypeScript and separating the template from styling and business logic, it is
especially suited for the enterprise-grade large code-base.

● It is inherently the most secure Front-end framework with built-in features like DOM
sanitization.

● Although Google is not backing Angular the same way as Facebook is backing React, it
is still putting enough resources so that Angular remains an attractive and innovative
framework. Recently it has added Lazy Loading, Differential loading to improve
loading time of modules.

● In Angular 9, it releases a new rendering Engine Ivy to improve startup time, response
time, and to reduce bundle size.

5. Express

When Node.js appeared in 2009, TJ Holowaychuk has created Express.js based on
the minimalistic Web Framework Sinatra. It is a minimalistic Web framework to develop
Web application and REST API. It is also less opinionated and very fast. Many other
JavaScript-based Web frameworks are based on Express.Today, Express.js is the most
popular JavaScript-based Web application framework hands down.
Features:
● Express.js is almost the default JavaScript Server Side framework.
● Express is the complete Application framework with middleware, routing, template.
● Express supports MVC pattern with View system supporting 14+ templating engines.
● It also offers robust routing.
● Express also supports content negotiation.

6. Next.js

React is a very unopinionated framework where React-Core just offers the view layer.
There was always a need for an end-to-end, opinionated framework based on React. Tim
Neutkens and a group of Software Engineers from the Dutch company Zeit has created
Next.js as an end-to-end, higher-level Web Framework on top of React and Node.js.
Next.js offers both Server-Rendered and Static Web sites for Web, Desktop, and Mobile
devices.

Features:
● Next.js is built upon the two most popular and battle-hardened JavaScript

frameworks: React and Node.js.

● It also offers “Build once, runs everywhere,” i.e., a Next.js can run on Web, Mobile, and
Desktop.

● Next.js offers excellent Server-Side rendering with exceptional SEO support and fast
startup.

● It offers automatic code splitting and filesystem-based routing.
● It also supports easy-to-use data fetching and built-in CSS support.

7.Meteor

In 2012, a group of Engineers had created Meteor as an isomorphic, open-source full-stack
JavaScript framework based on Node.js. It also supports building end-to-end applications
for Web, Mobile, Desktop platform and integrates well with popular front-end
frameworks like React, Vue.js, Angular, Svelte. It is also a “Batteries Included” framework
with “Out-of-the-box” support for Enterprise-grade App development.

Features:
● Meteor is a full-stack framework to develop the complete stack:

Frontend-to-Backend.
● For front-end development, it has its own template engine. But developers can use

Meteor with other popular front-end frameworks like Angular, React, Vue.js or Svelte.
● It is a cross-platform framework and can develop an application for Web, Mobile, and

Desktop.
● Meteor has integrated JavaScript stack, which enables different integrating

technologies (e.g., MongoDB database, React front-end) with minimum effort.

● It is an Isomorphic platform sharing the same API on client-side and server-side.

8. Svelte

In 2016, a Guardian Software Engineer Rich Harris had the groundbreaking idea to develop
a JavaScript framework with no framework-specific Runtime and released Svelte. The idea
was to use the Svelte compiler, which would compile framework-specific code to plain
JavaScript, HTML, CSS, and render the compiled code to the browser. Although the

concept was not new in software development, it was uncharted territory in Front-end
development. The other significant contribution of Svelte is to add first-class support of
reactivity, which leads to faster, improved performance without Virtual DOM. Today, it is
arguably the hottest Front-end framework with tremendous traction and interest in the
industry.

Features:
● It is a compile-time framework and does not need any framework-specific runtime. It

has the smallest bundle size among all frameworks.
● Svelte performs the DOM rendering via reactive programming, which is faster than

Virtual DOM most times. As a result, Svelte gives the fastest rendering among all
frameworks.

● Svelte is just a View layer like React-Core, and it is an unopinionated framework.
● Svelte supports both client-side and server-side rendering with excellent SEO

support.
● Developers can use Svelte to develop a Web app, Cross-platform Mobile App

development, or Desktop app development.
9. Koa

In 2013, the core members of Express.js led by TJ Holowaychuk had created Koa as
a lightweight, modern, expressive, and robust middleware framework for Web
Applications and APIs. Koa is hugely modular with tiny Core with no middleware.
However, middleware is available as separate modules.

 Features:
● Koa has a lightweight, smaller Core with no out-of-the-box Middleware bundle.
● Koa has a highly modular architecture and offers pluggable middleware Modules.
● Koa supports cascading middleware in a stack-like manner, which allows to perform

actions downstream then and manipulate the response upstream.
● Koa uses async/await instead of callback and supports cleaner, expressive code with

better error handling.
● In terms of performance, it outperforms Express.js.

10. Ember.js.

Inspired by the Ruby on Rails principle “Convention over Configuration,” Yehuda
Katz from Apple has created Ember.js as a highly opinionated, end-to-end framework in
2012. Ember.js is a strictly backward compatible framework introducing no significant
breaking changes since its inception. Where other frameworks from that era (Backbone.js,
AngularJS) are diminishing in popularity, Ember.js is still giving a reliable, productive
framework to fulfill the need of modern Front-end development.

Features:
● End-to-end opinionated cohesive framework focusing on “Convention over

Configuration.”
● Instead of one Tech giant, Ember is backed by several Tech Giant like LinkedIn, Yahoo.

As a result, it is not driven by one corporation’s needs.
● Ember’s Data library is the best to access data across multiple sources at once, set up

asynchronous relationships.
● In Ember CLI, it has the best CLI among all JavaScript frameworks, which helps to

scaffold and generating all the necessary codes with the right structure, including all
dependencies.

● In its latest release Ember Octane, it has introduced HTML first and component first
approach with improved support for state management and reactivity.

 11. Backbone.js

It is one of the most popular JavaScript frameworks. It is effortless to understand and
learn. It can be used to create Single Page Applications. The development of this
framework involves the idea that all the server-side functions must flow through an API,
which would help achieve complex functionalities by writing less code.

Features:

● BackboneJS uses JavaScript functions, making the development of applications and
the frontend in a much easier.

● Building blocks such as models, views, events, routers, and collections are provided
for assembling the client-side web applications.

● It is a simple library that helps in separating business and user interface logic.
● It is a free and open-source library and contains over 100 available extensions.
● It is a backbone for any project and helps in the organization of the code.
● BackboneJS has a soft dependency on jQuery and a hard dependency on

Underscore.js.
● It allows us to create client-side web applications or mobile applications in a

well-structured and organized format.

http://backbonejs.org/

12.Aurelia

Aurelia framework is the latest version of JavaScript, which can be used to implement any
interface. It is the next generation of the framework for developing far more robust
websites. The framework of Aurelia can extend the HTML for various purposes, including
data binding. Also, its modern architecture ensures that the purpose of toll is for
interpretation client-side and server-side at a time.

Features:

● Components: Components are building blocks of the Aurelia framework and are
composed of JavaScript view-model pairs and HTML views.

● Web Standards: It is one of the cleanest modern frameworks. It completely focuses
on web standards without unnecessary abstractions.

● Extensible: The framework facilitates an easy way to integrate with the other
needed tools.

● Commercial Support: This framework offers commercial and enterprise support.
● License: Aurelia is open-sourced and licensed under MIT license.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<script>
var subjectObject = {
"Front-end": {
"HTML": ["Links", "Images", "Tables", "Lists"],
"CSS": ["Borders", "Margins", "Backgrounds", "Float"],
"JavaScript": ["Variables", "Operators", "Functions", "Conditions"]
},
"Back-end": {
"PHP": ["Variables", "Strings", "Arrays"],
"SQL": ["SELECT", "UPDATE", "DELETE"]
}
}
window.onload = function() {
var subjectSel = document.getElementById("subject");

https://aurelia.io/

var topicSel = document.getElementById("topic");
var chapterSel = document.getElementById("chapter");
for (var x in subjectObject) {
subjectSel.options[subjectSel.options.length] = new Option(x, x);
}
subjectSel.onchange = function() {
 //empty Chapters- and Topics- dropdowns
 chapterSel.length = 1;
 topicSel.length = 1;
//display correct values
for (var y in subjectObject[this.value]) {
topicSel.options[topicSel.options.length] = new Option(y, y);
}
}
topicSel.onchange = function() {
 //empty Chapters dropdown
 chapterSel.length = 1;
//display correct values
var z = subjectObject[subjectSel.value][this.value];
for (var i = 0; i < z.length; i++) {
chapterSel.options[chapterSel.options.length] = new Option(z[i], z[i]);
}
}
}
</script>
</head>
<body>

<h1>Cascading Dropdown Example</h1>

<form name="form1" id="form1" action="/action_page.php">
Subjects: <select name="subject" id="subject">
<option value="" selected="selected">Select subject</option>
</select>

Topics: <select name="topic" id="topic">
<option value="" selected="selected">Please select subject first</option>
</select>

Chapters: <select name="chapter" id="chapter">
<option value="" selected="selected">Please select topic first</option>

</select>

<input type="submit" value="Submit">
</form>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
 <title>HTML and CSS Slideshow</title>
 <style>
 body {
 font-family: Helvetica, sans-serif;
 padding: 5%;
 text-align: center;
 font-size: 50;
 }

 /* Styling the area of the slides */

 #slideshow {
 overflow: hidden;
 height: 510px;
 width: 728px;
 margin: 0 auto;
 }

 /* Style each of the sides
 with a fixed width and height */

 .slide {
 float: left;
 height: 510px;
 width: 728px;
 }

 /* Add animation to the slides */

 .slide-wrapper {

 /* Calculate the total width on the
 basis of number of slides */
 width: calc(728px * 4);

 /* Specify the animation with the
 duration and speed */
 animation: slide 10s ease infinite;
 }

 /* Set the background color
 of each of the slides */

 .slide:nth-child(1) {
 background: green;
 }

 .slide:nth-child(2) {
 background: pink;
 }

 .slide:nth-child(3) {
 background: red;
 }

 .slide:nth-child(4) {
 background: yellow;
 }

 /* Define the animation
 for the slideshow */

 @keyframes slide {

 /* Calculate the margin-left for
 each of the slides */
 20% {
 margin-left: 0px;
 }
 40% {
 margin-left: calc(-728px * 1);
 }
 60% {
 margin-left: calc(-728px * 2);
 }
 80% {
 margin-left: calc(-728px * 3);
 }
 }

 </style>
</head>

<body>

 <!-- Define the slideshow container -->
 <div id="slideshow">
 <div class="slide-wrapper">

 <!-- Define each of the slides
 and write the content -->
 <div class="slide">
 <h1 class="slide-number">
 GeeksforGeeks
 </h1>
 </div>
 <div class="slide">
 <h1 class="slide-number">
 A computer science portal
 </h1>
 </div>
 <div class="slide">
 <h1 class="slide-number">
 This is an example of
 </h1>
 </div>
 <div class="slide">
 <h1 class="slide-number">
 Slideshow with HTML and CSS only
 </h1>
 </div>
 </div>
 </div>
</body>
</html>

